教学反思通过不断地的认真回顾教学能力的提高,会写教学反思不是一件值得炫耀的事情,最重要的是符合自己实际的教学情况,以下是好美篇小编精心为您推荐的8的分解教学反思5篇,供大家参考。

8的分解教学反思篇1
本节课的教学目标是让学生理解一元二次方程的根与二次三项式因式分解的关系,掌握公式法分解二次三项式。在教学引入中,通过二次三项式因式分解方法的探究,引导学生经历:观察思考归纳猜想论证等一系列探究过程,从而让学生领会和感悟认识问题和解决问题的一般规律:即由特殊到一般,再由一般到特殊,同时培养了的学生动手能力和观察思考和归纳小结的能力。另一方面通过运用一元二次方程根的知识来分解因式,让学生体会知识间普遍联系的数学美。
总的来说,建立在对所任教的学生仔细分析和对教学大纲认真研究基础上所作的教材处理和教学预设是贴近学生实际的,经过这节课的学习,学生较好的达到了教学目标的要求,较好的完成了教学任务,教学效果良好。此外,整节课比较好地体现了多媒体在教学上的辅助作用,特别是实物投影仪的运用可以直观快捷地把学生的练习情况反映在全班学生面前,这些都大大提高了教学效率,增大了教学容量,取得了良好的教学效果。
但本节课也有许多不足之处,如:
1、可以压缩第1部分,四道题目可以减半,这样可以节省一些时间,让课堂小结更充分些。
2、作业布置这一教学环节作为重要的一环应放入课堂上。
3、模仿练习的题目应该把分解好的部分乘出来看是否与左边相等,做好返回检验的工作,这样更便于学生的理解。
在今后的教学中应该更好更深刻的研究教材、研究教法、研究我们的学生,备课更充分、更完善些,从而更好的提高课堂教学的有效性。
8的分解教学反思篇2
讲解因式分解的定义的时候,同学们都很清楚。而我也强调的就是因式分解与乘法公式是相反方向的变形,并且在练习中一再将公式罗列出来。然后讲授提公因式法、公式法(包括平方差、完全平方公式),讲课的时候是一个公式一节课,先分解公式符合条件的形式再练习,主要是以练习为重。
讲课的过程是非常顺利的,这令我以为学生的掌握程度还好。
讲完因式分解的新课,我随堂出了一些综合性的练习题,才发现效果是不太好的。他们只是看到很表层的东西,而对于较为复杂的式子,却无从下手。
课后,我总结的原因有以下四点:
1、思想上不重视,因为对于公式的互换觉得太简单,只是将它作为一个简单的内容来看,所以课后没有以足够的练习来巩固。
2、在学习过程中太过于强调形式,反而如何创造条件来满足条件忽略了。导致他们对于与公式相同或者相似的式子比较熟悉而需要转化的或者多种公式混合使用的式子就难以入手。
3、灵活运用公式(特别与幂的运算性质相结合的公式)的能力较差,如要将9-25x2化成32-(5x)2然后应用平方差公式这样的题目却无从下手。究其原因,和我布置的作业及随堂练习的单一性及难度低的特点有关。
4、因式分解没有先想提公因式的习惯,在结果也没有注意是否进行到每一个多项式因式都不能再分解为止,比如最简单的将a3-a提公因式后应用平方差公式,但很多同学都是只化到a(a2-1)而没有化到最后结果a(a+1)(a-1)。因式分解是一个重要的内容,也是难点,我认为我对教材内容的调整是比较适合的,但是我忽略了学生的接受能力,也没有注意到计算题在练习方面的巩固及题型的多样化。在以后的教学中应该更多结合学生的学习情况去调整教学进度,多发现学生在学习方面的优势和不足之处。
8的分解教学反思篇3
因式分解与整式乘法是逆向变形,能熟练地对一个代数式进行因式分解,是学好数学的重要方法,通过这段时间的教学,对学生存在的问题归纳如下:
问题一:提公因式不彻底或提公因式后丢项。
问题二:应用公式分解因式,公式应用不正确。
问题三:分解因式不彻底。
问题四:因式分解与整式乘法相混淆。
问题五:代数式不能灵活的分解或灵活应用。
解决以上问题,必须明确两个原则
第一、有因式分解要先提取公因式。
第二、每个因式要分解到不能再分为止。
关键要做到以下几点:
1、什么是公因式,提公因式提什么?
公因式的概念要叫学生明确,公因式是各项系数的最大公约数与各项所合相同字母的最底次幂的积。
方法是:提取公因式是要先找到公因式,再把各项写成公因式和某个式子的积形式。再根据乘法分配律分解因式。
2、讲清公式,应用时,
一要判断;二要化成公式形式。三明确谁相当于公式中的第一个数,谁相当于公式中的第二个数。再应用相应的公式进行因式。
3、对于较难多项式要提醒学生要细心观察或分组或先整理再进行分解因式,应用了以上的方法,这段时间的教学取得了一定的成绩,但也有不足。因此,在今后的教学中要多留心提示学生对因式分解的应用。
8的分解教学反思篇4
一、本课的教学目的是:
1.能够正确理解因式分解的概念,知道它与整式乘法的区别和联系。
2.通过学生的自主探索,发现因式分解的基本方法,会用提公因式法把多项式进行因式分解。
教学重点是:因式分解的概念,用提公因式分解因式。
教学难点是:正确找出多项式中的公因式和公因式提出后另一个因式的确定。
教学过程为:在引入“因式分解”这一概念时是通过复习小学知识“因数分解”,接着让学生类比得到的。此处的设计意图是类比方法的渗透。因式分解与整式乘法的区别则通过把等号两边的式子互相转换位置而直观得出。在学习提取公因式时首先让学生通过小组讨论得到公因式的结构组成,并且引导学生得出提取公因式法这一因式分解的方法其实就是将被分解的多项式除以公因式得到余下的因式的计算过程。此处的意图是充分让学生自主探索,合作学习。而实际上,学生的学习情绪还是调动起来了的。通过小组讨论学习,尽管语言的组织方面不够完善,但是均可以得出结论。接着通过例题讲解,最后让学生自主完成练习题,老师当堂批改当堂讲评。
教学过程中,能做到及时向学生反馈信息。能走下讲台,做到课内批改大部分学生的练习,且对于个别学习本课新知识有困难的学生能单独予以辅导。在批改过程中,发现大部分学生都做错及存在的问题能充分利用多媒体向学生展示,或是马上板演为全体学生讲解清楚。
上完本课,教学目的能够完成,教学重难点也能逐个突破。
二、不足之处:
1.公因式与最大公因式的不同可以设置一两个题目引导学生理解。
2.提供因式法分解因式的根据是逆用乘法分配律。课前应该对分配律适当复习。
3.公因式是多项式时的类型,应该分层设计,引导不同程度的学生用不同的方法掌握它。
8的分解教学反思篇5
公式法进行因式分解,虽然应用的公式只是三条,但要灵活应用于解题却不容易。逆用平方差公式进行因式分解相对来说还是稍微简单些。
逆用平方差公式进行因式分解关键还是要搞清平方差公式(a+b)(a-b)=a2-b2的结构特点:公式的左边是这两个二项式的积,且这两个二项式有一项完全相同,另一项互为相反数,公式的右边是这两项的平方差,且是左边的相同的一项的平方减去互为相反数的一项的平方。
有了前边学习平方差公式为基础,逆用平方差公式进行因式分解只需要转换思维即可。但对学生来说,还是相当困难的。逆用平方差公式进行因式分解的步骤可分三步:
1、写成两项平方、差的形式,即找到相当于公式中a、b的项
2、按公式写出两项积的形式,即因式分解
3、两项中能合并同类项的各自合并。
例题及练习的呈现次序尽量本着先易后难的螺旋上升原则。
1、a、b代表单独的数字或字母,如:(1)m2-9(2)16-y2
2、a、b代表单独的数字、字母或只含数字、字母的单项式,
如:(1)4b2-9c2(2)m2n2-25
3、a、b代表多项式,如:(1)(2a+b)2-(a-b)2
(2)-(a+b+c)2+(a-b-c)2
在此要有“整体思想”的意识,注意:+部分的底数作为一个整体相当于a,-部分的底数作为一个整体相当于b,然后再套用公式。
尽管课前进行了充分的准备工作,但是学生作业中仍暴露出许多问题:
1、不会找a、b
2、思维僵化,对于与公式相同或者相似的式子而需要转化的'或者多种公式混合使用的式子难以入手,说明灵活运用公式的能力较差,如要将9-25X2化成32-(5x)2然后应用平方差公式这样的题目却无从下手
3、因式分解要养成先提公因式的习惯,结果要注意到是否进行到每一个多项式因式都不能再分解为止,比如最简单的将a3-a提公因式后应用平方差公式,但很多同学都是只化到a(a2-1)而没有化到最后结果a(a+1)(a-1)
因式分解是一个重要的内容,也是难点,要根据学生的接受能力,注意到计算题在练习方面的巩固及题型的多样化,相应地对教材内容及教学进度做出调整。
会计实习心得体会最新模板相关文章: